We introduce bisimulation up to congruence as a technique for proving language equivalence of nondeterministic finite automata. Exploiting this technique, we devise an optimization of the classic algorithm by Hopcroft and Karp.13 We compare our approach to the recently introduced antichain algorithms and we give concrete examples where we exponentially improve over antichains. Experimental results show significant improvements.
Checking language equivalence of finite automata is a classic problem in computer science, with many applications in areas ranging from compilers to model checking.
No entries found
Log in to Read the Full Article
Sign In
Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.