acm-header
Sign In

Communications of the ACM

Research highlights

Compressed Linear Algebra for Declarative Large-Scale Machine Learning


matrix image, illustration

Credit: Getty Images

Large-scale Machine Learning (ML) algorithms are often iterative, using repeated read-only data access and I/O-bound matrix-vector multiplications. Hence, it is crucial for performance to fit the data into single-node or distributed main memory to enable fast matrix-vector operations. General-purpose compression struggles to achieve both good compression ratios and fast decompression for block-wise uncompressed operations. Therefore, we introduce Compressed Linear Algebra (CLA) for lossless matrix compression. CLA encodes matrices with lightweight, value-based compression techniques and executes linear algebra operations directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show good compression ratios and operations performance close to the uncompressed case, which enables fitting larger datasets into available memory. We thereby obtain significant end-to-end performance improvements.

Back to Top

1. Introduction

Large-scale ML leverages large data collections to find interesting patterns or build robust predictive models.7 Applications range from traditional regression, classification, and clustering to user recommendations and deep learning for unstructured data. The labeled data required to train these ML models is now abundant, thanks to feedback loops in data products and weak supervision techniques. Many ML systems exploit data-parallel frameworks such as Spark20 or Flink2 for parallel model training and scoring on commodity hardware. It remains challenging, however, to train ML models on massive labeled data sets in a cost-effective manner. We provide compression-based methods for accelerating the linear algebra operations that are central to training. The key ideas are to perform these operations directly on the compressed data, and to automatically determine the best lossless compression scheme, as required by declarative ML systems.

Declarative ML. State-of-the-art, large-scale ML systems provide high-level languages to express ML algorithms by means of linear algebra such as matrix multiplications, aggregations, element-wise and statistical operations. Examples at different abstraction levels are SystemML,4 Mahout Samsara,17 Spark MLlib,19 and TensorFlow.1 The high-level specification allows data scientists to create or customize ML algorithms without worrying about data and cluster characteristics, data representations (e.g., sparse or dense formats), and execution-plan generation.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account