acm-header
Sign In

Communications of the ACM

Communications of the ACM

Computer pattern recognition techniques: electrocardiographic diagnosis


The use of programmed digital computers as general pattern classification and recognition devices is one phase of the current lively interest in artificial intelligence. It is important to choose a class of signals which is, at present, undergoing a good deal of visual inspection by trained people for the purpose of pattern recognition. In this way comparisons between machine and human performance may be obtained. A practical result also serves as additional motivation. Clinical electrocardiograms make up such a class of signals. The approach to the problem presented here centers upon the use of multiple adaptive matched filters that classify normalized signals. The present report gives some of the background for the application of this method.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account