acm-header
Sign In

Communications of the ACM

Communications of the ACM

Further remarks on line segment curve-fitting using dynamic programming


In a recent paper, Bellman showed how dynamic programming could be used to determine the solution to a problem previously considered by Stone. The problem comprises the determination, given N, of the N points of subdivision of a given interval (&agr;, &bgr; and the corresponding line segments, that give the best least squares fit to a function g(x) in the interval. Bellman confined himself primarily to the analytical derivation, suggesting briefly, however, how the solution of the equation derived for each particular point of subdivision ui could be reduced to a discrete search. In this paper, the computational procedure is considered more fully, and the similarities to some of Stone's equations are indicated. It is further shown that an equation for u2 involving no minimization may be found. In addition, it is shown how Bellman's method may be applied to the curve-fitting problem when the additional constraints are added that the ends of the line segments must be on the curve.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account