By Glenn D. Bergland
Communications of the ACM,
October 1968,
Vol. 11 No. 10, Pages 703-710
10.1145/364096.364118
Comments
A new procedure is presented for calculating the complex, discrete Fourier transform of real-valued time series. This procedure is described for an example where the number of points in the series is an integral power of two. This algorithm preserves the order and symmetry of the Cooley-Tukey fast Fourier transform algorithm while effecting the two-to-one reduction in computation and storage which can be achieved when the series is real. Also discussed are hardware and software implementations of the algorithm which perform only (N/4) log2 (N/2) complex multiply and add operations, and which require only N real storage locations in analyzing each N-point record.
<
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.