acm-header
Sign In

Communications of the ACM

Communications of the ACM

Numerical Analysis: A fast fourier transform algorithm for real-valued series


A new procedure is presented for calculating the complex, discrete Fourier transform of real-valued time series. This procedure is described for an example where the number of points in the series is an integral power of two. This algorithm preserves the order and symmetry of the Cooley-Tukey fast Fourier transform algorithm while effecting the two-to-one reduction in computation and storage which can be achieved when the series is real. Also discussed are hardware and software implementations of the algorithm which perform only (N/4) log2 (N/2) complex multiply and add operations, and which require only N real storage locations in analyzing each N-point record. <

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account