By Vincent A. Busam, Donald E. Englund
Communications of the ACM,
December 1969,
Vol. 12 No. 12, Pages 666-674
10.1145/363626.363635
Comments
A method of optimizing the computation of arithmetic and indexing expressions of a Fortran program is presented. The method is based on a linear analysis of the definition points of the variables and the branching and DO loop structure of the program.
The objectives of the processing are (1) to eliminate redundant calculations when references are made to common sub-expression values, (2) to remove invariant calculations from DO loops, (3) to efficiently compute subscripts containing DO iteration variables, and (4) to provide efficient index register usage.
The method presented requires at least a three-pass compiler, the second of which is scanned backward. It has been used in the development of several FORTRAN compilers that have proved to produce excellent object code without significantly reducing the compilation speed.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.