By Donald J. Rose
Communications of the ACM,
April 1969,
Vol. 12 No. 4, Pages 234-236
10.1145/362912.362940
Comments
An algorithm is presented for solving a system of linear equations Bu = k where B is tridiagonal and of a special form. This form arises when discretizing the equation - d/dx (p(x) du/dx) = k(x) (with appropriate boundary conditions) using central differences. It is shown that this algorithm is almost twice as fast as the Gaussian elimination method usually suggested for solving such systems. In addition, explicit formulas for the inverse and determinant of the matrix B are given.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.