By James L. Blue
Communications of the ACM,
June 1969,
Vol. 12 No. 6, Pages 327-330
10.1145/363011.363151
Comments
The solution of the nonlinear differential equation Y″ = F(x, Y, Y′) with two-point boundary conditions is approximated by a quintic or cubic spline function y(x). The method is well suited to nonuniform mesh size and dynamic mesh size allocation. For uniform mesh size h, the error in the quintic spline y(x) is O(h4), with typical error one-third that from Numerov's method. Requiring the differential equation to be satisfied at the mesh points results in a set of difference equations, which are block tridiagonal and so are easily solved by relaxation or other standard methods.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.