acm-header
Sign In

Communications of the ACM

Communications of the ACM

Fortran Tausworthe pseudorandom number generator


Intermediate computations in an “Extremely Portable Random Number Generator” by J. B. Kruskal [Comm. ACM 12, 2 (Feb. 1969), 93-94] exceed 15 bits plus sign. This is a severe limitation since the majority of small computers uses a 16 bit (15 bits plus sign) word or less. ASA standard FORTRAN compilers for these machines are readily available. Fortunately, a linearly recurring sequence generator [2] can be written in somewhat “portable” ASA Standard FORTRAN which will produce maximum length [2** (word size of computer - 1) -1] pseudorandom numbers for common 12, 16, 18, 24, and 32 bit computers, to mention only a few. Following Kendall's algorithm and notation presented by Whittlesey for a p-bit computer: p = 12, N = 11, M = 2; p = 16, N = 15, M = 1, 4, or 7; p = 18, N = 17, M = 3, 5, or 6; p = 24, N = 23, M = 5 or 9; and p = 32, N = 31, M = 3, 6, 7, or 13.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account