By C. R. Muthukrishnan, V. Rajaraman
Communications of the ACM,
June 1970,
Vol. 13 No. 6, Pages 347-351
10.1145/362384.362390
Comments
The use of execution time diagnostics in pinpointing ambiguities in decision tables is discussed. It is pointed out that any attempt at resolving ambiguities at compile time will, in general, be impossible. It is shown that, as a consequence, tree methods of converting decision tables to programs are inadequate in regard to ambiguity detection. Two algorithms for programming decision tables whose merits are simplicity of implementation and detection of ambiguities at execution time are presented. The first algorithm is for limited entry decision tables and clarifies the importance of proper coding of the information in the decision table. The second algorithm programs a mixed entry decision table directly without going through the intermediate step of conversion to a limited entry form, thereby resulting in storage economy. A comparison of the algorithms and others proposed in the literature is made. Some features of a decision table to FORTRAN IV translator for the IBM 7044 developed by the authors are given.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.