By Sven-Åke Gustafson
Communications of the ACM,
December 1971,
Vol. 14 No. 12, Pages 797-801
10.1145/362919.362941
Comments
Let ƒ have n continuous derivatives on a closed interval [a, b] and let L be a linear functional. The attempt is made to approximate L(ƒ) with L(Q) where Q is a polynomial, approximating ƒ. Algorithms are developed for rapid computation of L(Q) for a wide class of selections of Q which includes the Lagrangian and Hermitian rules as special cases.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.