By Zohar Manna, Richard J. Waldinger
Communications of the ACM,
March 1971,
Vol. 14 No. 3, Pages 151-165
10.1145/362566.362568
Comments
An elementary outline of the theorem-proving approach to automatic program synthesis is given, without dwelling on technical details. The method is illustrated by the automatic construction of both recursive and iterative programs operating on natural numbers, lists, and trees.
In order to construct a program satisfying certain specifications, a theorem induced by those specifications is proved, and the desired program is extracted from the proof. The same technique is applied to transform recursively defined functions into iterative programs, frequently with a major gain in efficiency.
It is emphasized that in order to construct a program with loops or with recursion, the principle of mathematical induction must be applied. The relation between the version of the induction rule used and the form of the program constructed is explored in some detail.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.