acm-header
Sign In

Communications of the ACM

Communications of the ACM

A stopping criterion for the Newton-Raphson method in implicit multistep integration algorithms for nonlinear systems of ordinary differential equations


In the numerical solution of ordinary differential equations, certain implicit linear multistep formulas, i.e. formulas of type ∑kj=0 &agr;jxn+j - hkj=0 &bgr;jxn+j = 0, (1) with &bgr;k> ≠ 0, have long been favored because they exhibit strong (fixed-h) stability. Lately, it has been observed [1-3] that some special methods of this type are unconditionally fixed-h stable with respect to the step size. This property is of great importance for the efficient solution of stiff [4] systems of differential equations, i.e. systems with widely separated time constants. Such special methods make it possible to integrate stiff systems using a step size which is large relative to the rate of change of the fast-varying components of the solution.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account