By M. Verhelst
Communications of the ACM,
November 1972,
Vol. 15 No. 11, Pages 974-980
10.1145/355606.361883
Comments
Two new algorithms for deriving optimal and near-optimal flowcharts from limited entry decision tables are presented. Both take into account rule frequencies and the time needed to test conditions. One of the algorithms, called the optimum-finding algorithm, leads to a flowchart which truly minimizes execution time for a decision table in which simple rules are already contracted to complex rules. The other one, called the optimum-approaching algorithm, requires many fewer calculations but does not necessarily produce the optimum flowchart. The algorithms are first derived for treating decision tables not containing an ELSE-rule, but the optimum-approaching algorithm is shown to be equally valid for tables including such a rule.
Both algorithms are compared with existing ones and are applied to a somewhat large decision table derived from a real case. From this comparison two conclusions are drawn. (1) The optimum-approaching algorithm will usually lead to better results than comparable existing ones and will not require more, but usually less, computation time. (2) In general, the greater computation effort needed for applying the optimum-finding algorithm will not be justified by the small reduction in execution time obtained.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.