By Stephen Sherman, Forest Baskett, J. C. Browne
Communications of the ACM,
December 1972,
Vol. 15 No. 12, Pages 1063-1069
10.1145/361598.361626
Comments
Microscopic level job stream data obtained in a production environment by an event-driven software probe is used to drive a model of a multiprogramming computer system. The CPU scheduling algorithm of the model is systematically varied. This technique, called trace-driven modeling, provides an accurate replica of a production environment for the testing of variations in the system. At the same time alterations in scheduling methods can be easily carried out in a controlled way with cause and effects relationships being isolated. The scheduling methods tested included the best possible and worst possible methods, the traditional methods of multiprogramming theory, round-robin, first-come-first-served, etc., and dynamic predictors. The relative and absolute performances of these scheduling methods are given. It is concluded that a successful CPU scheduling method must be preemptive and must prevent a given job from holding the CPU for too long a period.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.