By Philip Gilbert, W. J. Chandler
Communications of the ACM,
June 1972,
Vol. 15 No. 6, Pages 427-437
10.1145/361405.361409
Comments
Various kinds of interference between communicating parallel processes have been examined by Dijkstra, Knuth, and others. Solutions have been given for the mutual exclusion problem and associated subproblems, in the form of parallel programs, and informal proofs of correctness have been given for these solutions.
In this paper a system of parallel processes is regarded as a machine which proceeds from one state S (i.e. a collection of pertinent data values and process configurations) to a next state S′ in accordance with a transition rule S ⇒ S′.
A set of such rules yields sequences of states, which dictate the system's behavior. The mutual exclusion problem and the associated subproblems are formulated as questions of inclusion between sets of states, or of the existence of certain sequences. A mechanical proof procedure is shown, which will either verify (prove the correctness of) or discredit (prove the incorrectness of) an attempted solution, with respect to any of the interference properties.
It is shown how to calculate transition rules from the “partial rules” by which the individual processes operate. The formation of partial rules and the calculation of transition rules are both applicable to hardware processes as well as to software processes, and symmetry between processes is not required.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.