By Charles D. Pack
Communications of the ACM,
March 1973,
Vol. 16 No. 3, Pages 161-168
10.1145/361972.361991
Comments
A study is made of the way in which asynchronous time division multiplexing changes the stochastic nature of the arrival process from a user to the computer and, consequently, affects the performance of a time-shared computer-communications system. It is concluded that while, for certain values of system parameters, there is noticeable improvement in the performance of the computer (model), in the sense that time-shared scheduling delays are reduced, these improvements are offset by the transmission delays imposed by multiplexing so that there may be little or no change in the computer-communications system performance.
Analytical and simulation results are based on the model of the computer-communications system being an M/D/1 queue (the multiplexor) in tandem with a single exponential server (the computer). Analytical results include a general description of the output process of an M/D/1 queue and the conditions under which this output process is approximately Poisson.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.