acm-header
Sign In

Communications of the ACM

Communications of the ACM

Computation of page fault probability from program transition diagram


An algorithm is given for calculating page fault probability in a virtual memory system operating under demand paging with various memory sizes and replacement rules. A first order Markov model of program behavior is assumed, and a representation of the system based on memory states, control states, and memory substates is presented. The algorithm is general in the sense that the page fault probabilities can be calculated for nonpredictive replacement rules applied to any program represented by a one-step Markov chain. A detailed example is given to illustrate the algorithm for Random and Least Recently Used (LRU) replacement rules.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account