By Fănică Gavril
Communications of the ACM,
October 1975,
Vol. 18 No. 10, Pages 588-591
10.1145/361020.361216
Comments
Consider two linearly ordered sets A, B, | A | = m, | B | = n, m ≤ n, and p, p ≤ m, parallel processors working synchronously. The paper presents an algorithm for merging A and B with the p parallel processors, which requires at most 2⌈log2(2m + 1)⌉ + ⌊3m/p⌋ + [m/p][log2(n/m)] steps. If n = 2&bgr;m (&bgr; an integer), the algorithm requires at most 2[log2(m + 1)] + [m/p](2 + &bgr;) steps. In the case where m and n are of the same order of magnitude, i.e. n = km with k being a constant, the algorithm requires 2[log2(m + 1)] + [m/p](3 + k) steps. These performances compare very favorably with the previous best parallel merging algorithm, Batcher's algorithm, which requires n/p + ((m + n)/2p)log2m steps in the general case and km/p + ((k + 1)/2)(m/p)log2m in the special case where n = km.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.