By Jon Louis Bentley
Communications of the ACM,
September 1975,
Vol. 18 No. 9, Pages 509-517
10.1145/361002.361007
Comments
This paper develops the multidimensional binary search tree (or k-d tree, where k is the dimensionality of the search space) as a data structure for storage of information to be retrieved by associative searches. The k-d tree is defined and examples are given. It is shown to be quite efficient in its storage requirements. A significant advantage of this structure is that a single data structure can handle many types of queries very efficiently. Various utility algorithms are developed; their proven average running times in an n record file are: insertion, O(log n); deletion of the root, O(n(k-1)/k); deletion of a random node, O(log n); and optimization (guarantees logarithmic performance of searches), O(n log n). Search algorithms are given for partial match queries with t keys specified [proven maximum running time of O(n(k-t)/k)] and for nearest neighbor queries [empirically observed average running time of O(log n).] These performances far surpass the best currently known algorithms for these tasks. An algorithm is presented to handle any general intersection query. The main focus of this paper is theoretical. It is felt, however, that k-d trees could be quite useful in many applications, and examples of potential uses are given.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.