By R. Mark Claudson
Communications of the ACM,
September 1975,
Vol. 18 No. 9, Pages 517-523
10.1145/361002.361012
Comments
This paper deals with the development of a mathematical model for and the digital simulation in Fortran IV of phytoplankton and zooplankton population densities in a river using previously developed rate expressions. In order to study the relationships between the ecological mechanisms involved, the simulation parameters were varied illustrating the response of the ecosystem to different conditions, including those corresponding to certain types of chemical and thermal pollution. As an investigation of the accuracy of the simulation methods, a simulation of the actual population dynamics of Asterionella in the Columbia River was made based on approximations of conditions in that river. Although not totally accurate, the simulation was found to predict the general annual pattern of plankton growth fairly well and, specifically, revealed the importance of the annual velocity cycle in determining such patterns. In addition, the study demonstrates the usefulness of digital simulations in the examinations of certain aquatic ecosystems, as well as in environmental planning involving such examinations.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.