By Douglas W. Clark, C. Cordell Green
Communications of the ACM,
February 1977,
Vol. 20 No. 2, Pages 78-87
10.1145/359423.359427
Comments
Static measurements of the list structure of five large Lisp programs are reported and analyzed in this paper. These measurements reveal substantial regularity, or predictability, among pointers to atoms and especially among pointers to lists. Pointers to atoms are found to obey, roughly, Zipf's law, which governs word frequencies in natural languages; pointers to lists usually point to a location physically nearby in memory. The use of such regularities in the space-efficient representation of list structure is discussed. Linearization of lists, whereby successive cdrs (or cars) are placed in consecutive memory locations whenever possible, greatly strengthens the observed regularity of list structure. It is shown that under some reasonable assumptions, the entropy or information content of a car-cdr pair in the programs measured is about 10 to 15 bits before linearization, and about 7 to 12 bits after.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.