By James W. Hunt, Thomas G. Szymanski
Communications of the ACM,
May 1977,
Vol. 20 No. 5, Pages 350-353
10.1145/359581.359603
Comments
Previously published algorithms for finding the longest common subsequence of two sequences of length n have had a best-case running time of O(n2). An algorithm for this problem is presented which has a running time of O((r + n) log n), where r is the total number of ordered pairs of positions at which the two sequences match. Thus in the worst case the algorithm has a running time of O(n2 log n). However, for those applications where most positions of one sequence match relatively few positions in the other sequence, a running time of O(n log n) can be expected.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.