acm-header
Sign In

Communications of the ACM

Communications of the ACM

An O(n) algorithm for determining a near-optimal computation order of matrix chain products


This paper discusses the computation of matrix chain products of the form M1 × M22 × ··· × Mn where Mi's are matrices. The order in which the matrices are computed affects the number of operations. A sufficient condition about the association of the matrices in the optimal order is presented. An O(n) algorithm to find an order of computation which takes less than 25 percent longer than the optimal time Topt is also presented. In most cases, the algorithm yields the optimal order or an order which takes only a few percent longer than Topt (less than 1 percent on the average).

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account