By Shmuel Peleg, Azriel Rosenfeld
Communications of the ACM,
November 1979,
Vol. 22 No. 11, Pages 598-605
10.1145/359168.359174
Comments
Substitution ciphers are codes in which each letter of the alphabet has one fixed substitute, and the word divisions do not change. In this paper the problem of breaking substitution ciphers is represented as a probabilistic labeling problem. Every code letter is assigned probabilities of representing plaintext letters. These probabilities are updated in parallel for all code letters, using joint letter probabilities. Iterating the updating scheme results in improved estimates that finally lead to breaking the cipher. The method is applied successfully to two examples.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.