By Nachum Dershowitz, Zohar Manna
Communications of the ACM,
August 1979,
Vol. 22 No. 8, Pages 465-476
10.1145/359138.359142
Comments
A common tool for proving the termination of programs is the well-founded set, a set ordered in such a way as to admit no infinite descending sequences. The basic approach is to find a termination function that maps the values of the program variables into some well-founded set, such that the value of the termination function is repeatedly reduced throughout the computation. All too often, the termination functions required are difficult to find and are of a complexity out of proportion to the program under consideration.
Multisets (bags) over a given well-founded set S are sets that admit multiple occurrences of elements taken from S. The given ordering on S induces an ordering on the finite multisets over S. This multiset ordering is shown to be well-founded. The multiset ordering enables the use of relatively simple and intuitive termination functions in otherwise difficult termination proofs. In particular, the multiset ordering is used to prove the termination of production systems, programs defined in terms of sets of rewriting rules.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.