acm-header
Sign In

Communications of the ACM

Communications of the ACM

Deletion in two-dimensional quad trees


An algorithm for deletion in two-dimensional quad trees that handles the problem in a manner analogous to deletion in binary search trees is presented. The algorithm is compared with a proposed method for deletion which reinserts all of the nodes in the subtrees of the deleted node. The objective of the new algorithm is to reduce the number of nodes that need to be reinserted. Analysis for complete quad trees shows that the number of nodes requiring reinsertion is reduced to as low as 2/9 of that required by the old algorithm. Simulation tests verify this result. Reduction of the number of insertions has a similar effect on the number of comparison operations. In addition, the total path length (and balance) of the resulting tree is observed to remain constant or increase slightly when the new algorithm for deletion is used, whereas use of the old algorithm results in a significant increase in the total path length for large trees.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account