By Alan Jay Smith
Communications of the ACM,
August 1981,
Vol. 24 No. 8, Pages 521-532
10.1145/358722.358737
Comments
The steady increase in the power and complexity of modern computer systems has encouraged the implementation of automatic file migration systems which move files dynamically between mass storage devices and disk in response to user reference patterns. Using information describing 13 months of user disk data set file references, we develop and evaluate (replacement) algorithms for the selection of files to be moved from disk to mass storage. Our approach is general and demonstrates a general methodology for this type of problem. We find that algorithms based on both the file size and the time since the file was last used work well. The best realizable algorithms tested condition on the empirical distribution of the times between file references. Acceptable results are also obtained by selecting for replacement that file whose size times time to most recent reference is maximal. Comparisons are made with a number of standard algorithms developed for paging, such as Working Set, VMIN, and GOPT. Sufficient information (parameter values, fitted equations) is provided so that our algorithms may be easily implemented on other systems.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.