acm-header
Sign In

Communications of the ACM

Communications of the ACM

An effective way to represent quadtrees


A quadtree may be represented without pointers by encoding each black node with a quaternary integer whose digits reflect successive quadrant subdivisions. We refer to the sorted array of black nodes as the “linear quadtree” and show that it introduces a saving of at least 66 percent of the computer storage required by regular quadtrees. Some algorithms using linear quadtrees are presented, namely, (i) encoding a pixel from a 2n × 2>n array (or screen) into its quaternary code; (ii) finding adjacent nodes; (iii) determining the color of a node; (iv) superposing two images. It is shown that algorithms (i)-(iii) can be executed in logarithmic time, while superposition can be carried out in linear time with respect to the total number of black nodes. The paper also shows that the dynamic capability of a quadtree can be effectively simulated.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account