By Irene Gargantini
Communications of the ACM,
December 1982,
Vol. 25 No. 12, Pages 905-910
10.1145/358728.358741
Comments
A quadtree may be represented without pointers by encoding each black node with a quaternary integer whose digits reflect successive quadrant subdivisions. We refer to the sorted array of black nodes as the “linear quadtree” and show that it introduces a saving of at least 66 percent of the computer storage required by regular quadtrees. Some algorithms using linear quadtrees are presented, namely, (i) encoding a pixel from a 2n × 2>n array (or screen) into its quaternary code; (ii) finding adjacent nodes; (iii) determining the color of a node; (iv) superposing two images. It is shown that algorithms (i)-(iii) can be executed in logarithmic time, while superposition can be carried out in linear time with respect to the total number of black nodes. The paper also shows that the dynamic capability of a quadtree can be effectively simulated.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.