By Yong Tsui Lee, Aristides A. G. Requicha
Communications of the ACM,
September 1982,
Vol. 25 No. 9, Pages 635-641
10.1145/358628.358643
Comments
The volume, moments of inertia, and similar properties of solids are defined by triple (volumetric) integrals over subsets of three-dimensional Euclidean space. The automatic computation of such integral properties for geometrically complex solids is important in CAD/CAM, robotics, and other fields and raises interesting mathematical and computational problems that have received little attention from numerical analysts and computer scientists. This paper summarizes the known methods for calculating integral properties of solids that may be geometrically complex and identifies some significant gaps in our current knowledge.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.