By Jeffrey L. Eppinger
Communications of the ACM,
September 1983,
Vol. 26 No. 9, Pages 663-669
10.1145/358172.358183
Comments
This paper describes an experiment on the effect of insertions and deletions on the path length of unbalanced binary search trees. Repeatedly inserting and deleting nodes in a random binary tree yields a tree that is no longer random. The expected internal path length differs when different deletion algorithms are used. Previous empirical studies indicated that expected internal path length tends to decrease after repeated insertions and asymmetric deletions. This study shows that performing a larger number of insertions and asymmetric deletions actually increases the expected internal path length, and that for sufficiently large trees, the expected internal path length becomes worse than that of a random tree. With a symmetric deletion algorithm, however, the experiments indicate that performing a large number of insertions and deletions decreases the expected internal path length, and that the expected internal path length remains better than that of a random tree.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.