By M. D. Atkinson, J.-R. Sack, B. Santoro, T. Strothotte
Communications of the ACM,
October 1986,
Vol. 29 No. 10, Pages 996-1000
10.1145/6617.6621
Comments
A simple implementation of double-ended priority queues is presented. The proposed structure, called a min-max heap, can be built in linear time; in contrast to conventional heaps, it allows both FindMin and FindMax to be performed in constant time; Insert, DeleteMin, and DeleteMax operations can be performed in logarithmic time. Min-max heaps can be generalized to support other similar order-statistics operations efficiently (e.g., constant time FindMedian and logarithmic time DeleteMedian); furthermore, the notion of min-max ordering can be extended to other heap-ordered structures, such as leftist trees.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.