acm-header
Sign In

Communications of the ACM

Communications of the ACM

Tree rebalancing in optimal time and space


A simple algorithm is given which takes an arbitrary binary search tree and rebalances it to form another of optimal shape, using time linear in the number of nodes and only a constant amount of space (beyond that used to store the initial tree). This algorithm is therefore optimal in its use of both time and space. Previous algorithms were optimal in at most one of these two measures, or were not applicable to all binary search trees. When the nodes of the tree are stored in an array, a simple addition to this algorithm results in the nodes being stored in sorted order in the initial portion of the array, again using linear time and constant space.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account