By Jorge L. C. Sanz, Its'hak Dinstein, Dragutin Petkovic
Communications of the ACM,
April 1987,
Vol. 30 No. 4, Pages 318-329
10.1145/32232.32235
Comments
New techniques for computing multicolored polygonal masks for image analysis and computer vision applications are presented. The procedures do not require random access of the image memory. They are based on efficient generation of coordinate-reference images (ramps) and other simple general purpose architectural features such as look-up tables. The techniques presented are, unlike their predecessors, highly parallel and can be efficiently implemented in existing pipeline image processors. In addition, we show an architecture in the form of functional building blocks that will enable us to compute polygonal and other masks much faster than commercially available pipeline systems. Extensive motivation and use of the new algorithms for digital visual inspection applications are given throughout.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.