By R. W. Hall
Communications of the ACM,
February 1989,
Vol. 32 No. 1, Pages 124-131
10.1145/63238.63248
Comments
A recently published parallel thinning approach [4] is evaluated. An improvement is suggested to enable preservation of certain diagonal lines which are not preserved by this algorithm. A unified notion of what is meant by an iteration (or subiteration) and parallel speed is presented, and with regard to its parallel speed this algorithm is argued to be comparable to other two-subiteration algorithms. The parallel speed of this algorithm is compared experimentally to the original algorithm that it improves [12] and it is shown that, unlike execution time on a specific machine, parallel speed is not improved. Finally, a more complete connectivity analysis is given illustrating sufficient additional conditions for applying fully in parallel the basic thinning operator used in both algorithms while maintaining all image connectivity properties.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.