acm-header
Sign In

Communications of the ACM

Communications of the ACM

LEDA: a platform for combinatorial and geometric computing


Combinatorial and geometric computing is a core area of computer science (CS). In fact, most CS curricula contain a course in data structures and algorithms. The area deals with objects such as graphs, sequences, dictionaries, trees, shortest paths, flows, matchings, points, segments, lines, convex hulls, and Voronoi diagrams and forms the basis for application areas such as discrete optimization, scheduling, traffic control, CAD, and graphics. There is no standard library of the data structures and algorithms of combinatorial and geometric computing. This is in sharp contrast to many other areas of computing. There are, for example, packages in statistics (SPSS), numerical analysis (LINPACK, EISPACK), symbolic computation (MAPLE, MATHEMATICA), and linear programming (CPLEX).

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account