acm-header
Sign In

Communications of the ACM

Research highlights

Neuroscience Meets Cryptography: Crypto Primitives Secure Against Rubber Hose Attacks


Neuroscience Meets Cryptography, illustration

Credit: Impulse

Cryptographic systems often rely on the secrecy of cryptographic keys given to users. Many schemes, however, cannot resist coercion attacks where the user is forcibly asked by an attacker to reveal the key. These attacks, known as rubber hose cryptanalysis, are often the easiest way to defeat cryptography. We present a defense against coercion attacks using the concept of implicit learning from cognitive psychology. Implicit learning refers to learning of patterns without any conscious knowledge of the learned pattern. We use a carefully crafted computer game to allow a user to implicitly learn a secret password without them having any explicit or conscious knowledge of the trained password. While the trained secret can be used for authentication, participants cannot be coerced into revealing it since they have no conscious knowledge of it. We performed a number of user studies using Amazon's Mechanical Turk to verify that participants can successfully re-authenticate over time and that they are unable to reconstruct or even robustly recognize the trained secret.

Back to Top

1. Introduction

Consider the following scenario: a high security facility employs a sophisticated authentication system to check that only persons who know a secret key, possess a hardware token, and have an authorized biometric can enter. Guards ensure that only people who successfully authenticate can enter the facility. Suppose a clever attacker captures an authenticated user. The attacker can steal the user's hardware token, fake the user's biometrics, and coerce the victim by threatening them with a weapon such as a rubber hose into revealing his or her secret key. At this point, the attacker can impersonate the victim and defeat the expensive authentication system deployed at the facility.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account