One of the featured speakers at the inaugural Text By The Bay conference, held in San Francisco in April 2015, drew laughter when describing a neural network question-answering model that could beat human players in a trivia game.
While such performance by computers is fairly well known to the general public, thanks to IBM's Watson cognitive computer, the speaker, natural language processing (NLP) researcher Richard Socher, said, the neural network model he described "was built by one grad student using deep learning" rather than by a large team with the resources of a global corporation behind them.
Comments
Sherman Foresythe
March 16, 2016 04:21
It's also interesting to note what role Lawrence Berkeley Lab has played in vector space from 2005 https://www.kaggle.com/c/word2vec-nlp-tutorial/forums/t/12349/word2vec-is-based-on-an-approach-from-lawrence-berkeley-national-lab
Displaying 1 comment
Log in to Read the Full Article
Sign In
Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.