Highly classified information on personal computers in the U.S. today is largely protected from the attacks Daniel Genkin et al. described in their article "Physical Key Extraction Attacks on PCs" (June 2016). Here, I outline cost-effective defenses that will in the future completely defeat such attacks, while making even stronger cyberattacks extremely difficult.
For example, tiny Faraday cages can be constructed in a processor package so encryption/decryption can be performed without the possibility of inadvertent emanations that could be measured or exploited, because all external communication to a cage would be through optical fiber and the cage's power supply is filtered.1 This way, encryption keys and encryption/decryption processes would be completely protected against the attacks described in the article. In such a Faraday cage, advanced cryptography (such as Learning With Errors) could not be feasibly attacked through any known method, including quantum computing.
No entries found