Stanford University visiting researcher Alireza Marandi (right) and post-doctoral scholar Peter McMahon inspect a prototype of a new light-based computer.
Credit: Linda A. Cicero / Stanford University
A 20th-century theoretical model of the way magnetism develops in cooling solids is driving the development of analog computers that could deliver results with much less electrical power than today's super-computers. But the work may instead yield improved digital algorithms rather than a mainstream analog architecture.
Helmut Katzgraber, associate professor at Texas A&M in College Station, TX, argues, "There is a deep synergy between classical optimization, statistical physics, high-performance computing, and quantum computing. Those things really go hand in hand. Nature is the best optimizer out there. Lightning typically chooses the path of least resistance. A soap bubble will always give you the minimal surface."
No entries found