acm-header
Sign In

Communications of the ACM

News

Learning to See


inovirus, illustration

How do you look for a needle in a haystack, when you are not sure what the needle looks like? This is the problem that faces scientists as they try to deal with increasingly complex datasets. One answer is to turn machine learning loose on the enormous volumes of data they have captured.

The problem of finding relevant data in genetic databases is one that Simon Roux, a researcher working at the U.S. Department of Energy's Joint Genome Institute, faced when investigating the role that an obscure and little-understood family of viruses plays in the environment.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account