We envision a new generation of computation devices, computational materials, which are self-sustainable, cheaply manufactured at scale and exhibit form factors that are easily incorporated into everyday environments. These materials can enable ordinary objects such as walls, carpet, furniture, jewelry, and cups to do computational things without looking like today's computational devices. Self-powered Audio Triboelectric Ultra-thin Rollable Nanogenerator (SATURN) is an early example of a computational material that can sense vibration, such as sound. SATURN can be manufactured from inexpensive components, is flexible so that it can be integrated into many different surfaces, and powers itself through the sound or vibration it is sensing. Using radio backscatter, we demonstrate that SATURN's sensed data is passively transmitted to remote computers, alleviating the need for batteries or any wired power for the material itself. The proliferation of these types of computational materials ushers an era of Internet of Materials, further blurring the distinction between the physical and digital worlds.
Figure. Sound impacts the SATURN vibration sensor, which is formed in the shape of the elephant's ear. SATURN'S triboelectric components vibrate (inset), generating an electrical signal.
The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.18
This poetic and mostly metaphorical vision from Mark Weiser inspired nearly 30 years of ubiquitous computing research. Weiser correctly predicted an era of proliferation of many differently sized devices aimed at augmenting our human experience with technology. Today's realization of ubiquitous computing devices—smartphones, tablets, electronic whiteboards, and wearables—is still fairly easy to distinguish from everyday objects in the physical world. Sizes may vary, but there are still very distinctive characteristics of something that is computational. The Internet of Things (IoT) has tried to hide computing into more and more everyday objects, such as light bulbs, television sets, and speakers, but we are still far from a complete blurring of the physical and digital worlds. To make something computational still requires "smarts" composed of off-the-shelf integrated circuits housed in rigid modules that are packaged with existing objects. Computing is too separate from the materials of everyday objects. We propose a different direction based on Weiser's vision, that is, starting with the materials of everyday life and creating computation from there. In doing so, we propose an Internet of Materials (IoM), where the very materials of objects and surfaces are augmented or manufactured to have computational capabilities. This recasting of ubiquitous computing as "computational materials" presents three major challenges:
No entries found