By Ricardo Bianchini, Marcus Fontoura, Eli Cortez, Anand Bonde, Alexandre Muzio, Ana-Maria Constantin, Thomas Moscibroda, Gabriel Magalhaes, Girish Bablani, Mark Russinovich
Communications of the ACM,
February 2020,
Vol. 63 No. 2, Pages 50-59
10.1145/3364684 Comments
Cloud platforms, such as Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform, are tremendously complex. For example, the Azure Compute fabric governs all the physical and virtualized resources running in Microsoft's datacenters. Its main resource management systems include virtual machine (VM) and container (hereafter we refer to VMs and containers simply as "containers") scheduling, server and container health monitoring and repairs, power and energy management, and other management functions.
Cloud platforms are also extremely expensive to build and operate, so providers have a strong incentive to optimize their use. A nascent approach is to leverage machine learning (ML) in the platforms' resource management using supervised learning techniques, such as gradient-boosted trees and neural networks, or reinforcement learning. We also discuss why ML is often preferable to traditional non-ML techniques.
No entries found
Log in to Read the Full Article
Sign In
Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.