Wind-generated electricity has expanded greatly over the past decade. In the U.S., for example, by 2018 wind was generating 6.6% of utility-scale electricity generation, according to the U.S. Energy Information Administration. The criteria for efficient design and reliable operation of the familiar horizontal-axis wind turbines have been well established through decades of experience, leading to ever-larger structures over time, both to intercept more wind and to reach faster winds higher up.
As these gargantuan turbines are assembled into large wind farms, often spread over uneven terrain, complex aerodynamic interactions between them have become increasingly important. To address this issue, researchers have proposed protocols that slightly reorient individual turbines to improve the output of others downwind, and they are working with wind farm operators to assess their real-life performance. Beyond extracting more power from current farms, widespread use of these "wake-steering" techniques could allow denser wind farm designs in the future.
No entries found