acm-header
Sign In

Communications of the ACM

Contributed articles

Domain-Specific Hardware Accelerators


colored chip on circuit board, illustration

Credit: Matt Herring, Bet_Noire / Getty Images

From the simple embedded processor in your washing machine to powerful processors in data center servers, most computing today takes place on general-purpose programmable processors or CPUs. CPUs are attractive because they are easy to program and because large code bases exist for them. The programmability of CPUs stems from their execution of sequences of simple instructions, such as ADD or BRANCH; however, the energy required to fetch and interpret an instruction is 10x to 4000x more than that required to perform a simple operation such as ADD. This high overhead was acceptable when processor performance and efficiency were scaling according to Moore's Law.32 One could simply wait and an existing application would run faster and more efficiently. Our economy has become dependent on these increases in computing performance and efficiency to enable new features and new applications. Today, Moore's Law has largely ended,12 and we must look to alternative architectures with lower overhead, such as domain-specific accelerators, to continue scaling of performance and efficiency. There are several ways to realize domain-specific accelerators as discussed in the sidebar on accelerator options.

Back to Top

Key Insights

ins01.gif

A domain-specific accelerator is a hardware computing engine that is specialized for a particular domain of applications. Accelerators have been designed for graphics,26 deep learning,16 simulation,2 bioinformatics,49 image processing,38 and many other tasks. Accelerators can offer orders of magnitude improvements in performance/cost and performance/W compared to general-purpose computers. For example, our bioinformatics accelerator, Darwin,49 is up to 15,000x faster than a CPU at reference-based, long-read assembly. The performance and efficiency of accelerators is due to a combination of specialized operations, parallelism, efficient memory systems, and reduction of overhead. Domain-specific accelerators7 are becoming more pervasive and more visible, because they are one of the few remaining ways to continue to improve performance and efficiency now that Moore's Law has ended.22


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.