acm-header
Sign In

Communications of the ACM

Research highlights

Technical Perspective: Deciphering Errors to Reduce the Cost of Quantum Computation


Quantum computers may one day upend cryptography, help design new materials and drugs, and accelerate many other computational tasks. A quantum computer's memory is a quantum system, capable of being in a superposition of many different bit strings at once. It can take advantage of quantum interference to run uniquely quantum algorithms which can solve some (but not all) computational problems much faster than a regular classical computer. Experimental efforts to build a quantum computer have taken enormous strides forward in the last decade, leading to today's devices with over 50 quantum bits ("qubits"). Governments and large technology companies such as Google, IBM, and Microsoft, as well as a slew of start-ups, have begun pouring money into the field hoping to be the first with a useful quantum computer.

However, many hurdles remain before we have large-scale quantum computers capable of the tasks described here. Whereas hardware errors are rare in classical computers, they will be a significant complication for quantum computers, in part because quantum systems are small and therefore fragile, and in part because the act of observing a quantum system collapses it, destroying the superpositions that distinguish quantum from classical. Even a single atom passing by can interact with a qubit, develop a correlation with it, and thereby eliminate the qubit's quantum coherence.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account