Data useful to science is not shared as much as it should or could be, particularly when that data contains sensitivities of some kind. In this column, I advocate the use of hardware trusted execution environments (TEEs) as a means to significantly change approaches to and trust relationships involved in secure, scientific data management. There are many reasons why data may not be shared, including laws and regulations related to personal privacy or national security, or because data is considered a proprietary trade secret. Examples of this include electronic health records, containing protected health information (PHI); IP addresses or data representing the locations or movements of individuals, containing personally identifiable information (PII); the properties of chemicals or materials, and more. Two drivers for this reluctance to share, which are duals of each other, are concerns of data owners about the risks of sharing sensitive data, and concerns of providers of computing systems about the risks of hosting such data. As barriers to data sharing are imposed, data-driven results are hindered, because data is not made available and used in ways that maximize its value.
Hardware trusted execution environments can form the basis for platforms that provide strong security benefits while maintaining computational performance.
And yet, as emphasized widely in scientific communities,3,5 by the National Academies, and via the U.S. government's initiatives for "responsible liberation of Federal data," finding ways to make sensitive data available is vital for advancing scientific discovery and public policy. When data is not shared, certain research may be prevented entirely, be significantly more costly, take much longer, or might simply not be as accurate because it is based on smaller, potentially more biased datasets.
No entries found