The high expectations of AI have triggered worldwide interest and concern, generating 400+ policy documents on responsible AI. Intense discussions over the ethical issues lay a helpful foundation, preparing researchers, managers, policy makers, and educators for constructive discussions that will lead to clear recommendations for building the reliable, safe, and trustworthy systems6 that will be commercial success. This Viewpoint focuses on four themes that lead to 15 recommendations for moving forward. The four themes combine AI thinking with human-centered User Experience Design (UXD).
Ethics and Design. Ethical discussions are a vital foundation, but raising the edifice of responsible AI requires design decisions to guide software engineering teams, business managers, industry leaders, and government policymakers. Ethical concerns are catalogued in the Berkman Klein Center report3 that offers ethical principles in eight categories: privacy, accountability, safety and security, transparency and explainability, fairness and non-discrimination, human control of technology, professional responsibility, and promotion of human values. These important ethical foundations can be strengthened with actionable design guidelines.
Autonomous Algorithms and Human Control. The recent CRA report2 on "Assured Autonomy" and the IEEE's influential report4 on "Ethically Aligned Design" are strongly devoted to "Autonomous and Intelligent Systems." The reports emphasize machine autonomy, which becomes safer when human control can be exercised to prevent damage. I share the desire for autonomy by way of elegant and efficient algorithms, while adding well-designed control panels for users and supervisors to ensure safer outcomes. Autonomous aerial drones become more effective as remotely piloted aircraft and NASA's Mars Rovers can make autonomous movements, but there is a whole control room of operators managing the larger picture of what is happening.
Humans in the Group; Computers in the Loop. While people are instinctively social, they benefit from well-designed computers. Some designers favor developing computers as collaborators, teammates, and partners, when adding control panels and status displays would make them comprehensible appliances. Machine and deep learning strategies will be more widely used if they are integrated in visual user interfaces, as they are in counterterrorism centers, financial trading rooms, and transportation or utility control centers.
Explainable AI (XAI) and Comprehensible AI (CAI). Many researchers from AI and HCI have turned to the problem of providing explanations of AI decisions, as required by the European General Data Protection Regulation (GDPR) stipulating a "right to explanation."13 Explanations of why mortgage applications or parole requests are rejected can include local or global descriptions, but a useful complementary approach is to prevent confusion and surprise by making comprehensible user interfaces that enable rapid interactive exploration of decision spaces.
Combining AI with UXD will enable rapid progress to the goals of reliable, safe, and trustworthy systems.
Combining AI with UXD will enable rapid progress to the goals of reliable, safe, and trustworthy systems. Software engineers, designers, developers, and their managers are practitioners who need more than ethical discussion. They want clear guidance about what to do today as they work toward deadlines with their limited team resources. They operate in competitive markets that reward speed, clarity, and performance.
This Viewpoint is a brief introduction to the 15 recommendations in a recent article in the ACM Transactions on Interactive Intelligent Systems,8 which bridge the gap between widely discussed ethical principles and practical steps for effective governance that will lead to reliable, safe, and trustworthy AI systems. That article offers detailed descriptions and numerous references. The recommendations, grouped into three levels of governance structures, are meant to provoke discussions that could lead to validated, refined, and widely implemented practices (see the figure here).
Figure. Governance structures to guide teams, organizations, and industry leaders.
These practices are intended for software engineering teams of designers, developers, and managers.
Critics of these practices believe innovation is happening so quickly that these are luxuries that most software engineering teams cannot afford. Changing from the current practice of releasing partially tested software will yield more reliable and safer products and services.
Management investment in an organizational safety culture requires budget and personnel, but the payoff is in reduced injuries, damage, and costs.
Changing from the current practice of releasing partially tested software will yield more reliable and safer products and services.
Skeptics worry that organizations are so driven by short-term schedules, budgets, and competitive pressures that the commitment to these safety culture practices will be modest and fleeting.5 Organizations can respond by issuing annual safety reports with standard measures and independent oversight. It may take years for organizations to mature enough so they make serious commitments to safety.
The third governance layer brings industry-specific independent oversight to achieve trustworthy systems that receive wide public acceptance. The key to independent oversight is to support the legal, moral, and ethical principles of human or organizational responsibility and liability for their products and services. Responsibility is a complex topic, with nuanced variations such as legal liability, professional accountability, moral responsibility, and ethical bias. Independent oversight is widely used by businesses, government agencies, universities, non-governmental organizations, and civic society to stimulate discussions, review plans, monitor ongoing processes, and analyze failures. The goal of independent oversight is to promote continuous improvements that ensure reliable, safe, and trustworthy products and services.
These recommendations are meant to increase reliability, safety, and trustworthiness while increasing the benefits of AI technologies.
These recommendations for teams, organizations, and industries are meant to increase reliability, safety, and trustworthiness while increasing the benefits of AI technologies. After all, the stakes are high: the right kinds of technology advance human values and dignity, while promoting self-efficacy, creativity, and responsibility. The wrong kinds of technology will increase the dangers from failures and malicious actors. Constructive adoption of these recommendations could do much to improve privacy, security, environmental protection, economic development, healthcare, social justice, and human rights.
1. Baeza-Yates, R. Bias on the Web. Commun. ACM 61, 6 (June 2018), 54–61.
2. Computing Research Association. Assured Autonomy: Path toward living with autonomous systems we can trust. Washington, D.C. (Oct. 2020); https://bit.ly/3weGL9W
3. Fjeld, J. et al. Principled artificial intelligence: Mapping consensus in ethical and rights-based approaches to principles for AI. Berkman Klein Center Research Publication, (2020-1); https://bit.ly/358NYfN
4. IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, First Edition. IEEE (2019); https://bit.ly/3gaBrig
5. Larouzee, J. and Le Coze, J.C. Good and bad reasons: The Swiss cheese model and its critics. Safety Science, 126, 104660 (2020); https://bit.ly/3izZ8Ca
6. Landwehr, C. We need a building code for building code. Commun. ACM 58, 2 (Feb. 2015), 24–26.
7. Shneiderman, B. Human-centered artificial intelligence: Reliable, safe and trustworthy. International Journal of Human Computer Interaction 36, 6 (2020), 495–504; https://bit.ly/3gaUetz
8. Shneiderman, B. Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy Human-Centered AI Systems, ACM Transactions on Interactive Intelligent Systems 10, 4, Article 26 (2020); https://bit.ly/3xisPff
9. Slayton, R. and Clark-Ginsberg, A. Beyond regulatory capture: Coproducing expertise for critical infrastructure protection. Regulation & Governance 12, 1 (2018), 115–130; https://bit.ly/3xbhjSK
10. U.S. White House. American Artificial Intelligence Initiative: Year One Annual Report. Office of Science and Technology Policy (2020); https://bit.ly/2Tl6sXT
11. von Wangenheim, C.G. et al. Creating software process capability/maturity models. IEEE Software 27, 4 (2010), 92–94.
12. Vought, R.T. Guidance for Regulation of Artificial Intelligence Applications. U.S. White House Announcement, Washington, D.C. (Feb. 11, 2019); https://bit.ly/35bhlxT
13. Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harvard Journal of Law and Technology 31 (2017), 841–887.
14. Weld, D.S. and Bansal, G. The challenge of crafting intelligible intelligence. Commun. ACM 62, 6 (June 2019), 70–79.
The Digital Library is published by the Association for Computing Machinery. Copyright © 2021 ACM, Inc.
No entries found