acm-header
Sign In

Communications of the ACM

News

Accelerating AI


beams of light emanating from a chip, illustration

Credit: James Teoh Art

The success of machine learning for a wide range of applications has come with serious costs. The largest deep neural networks can have hundreds of billions of parameters that need to be tuned to mammoth datasets. This computationally intensive training process can cost millions of dollars, as well as large amounts of energy and associated carbon. Inference, the subsequent application of a trained model to new data, is less demanding for each use, but for widely used applications, the cumulative energy use can be even greater.

"Typically there will be more energy spent on inference than there is on training," said David Patterson, Professor Emeritus at the University of California, Berkeley, and a Distinguished Engineer at Google, who in 2017 shared ACM's A.M. Turing Award. Patterson and his colleagues recently posted a comprehensive analysis of carbon emissions from some large deep-learning applications, finding that energy invested to refine training can be more than compensated by reduced inference costs for improved models.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account