acm-header
Sign In

Communications of the ACM

News

A Deeper Understanding of Deep Learning


illustrative image of hexagons and arrows

Credit: Getty Images

Deep learning should not work as well as it seems to: according to traditional statistics and machine learning, any analysis that has too many adjustable parameters will overfit noisy training data, and then fail when faced with novel test data. In clear violation of this principle, modern neural networks often use vastly more parameters than data points, but they nonetheless generalize to new data quite well.

The shaky theoretical basis for generalization has been noted for many years. One proposal was that neural networks implicitly perform some sort of regularization—a statistical tool that penalizes the use of extra parameters. Yet efforts to formally characterize such an "implicit bias" toward smoother solutions have failed, said Roi Livni, an advanced lecturer in the department of electrical engineering of Israel's Tel Aviv University. "It might be that it's like a needle in a haystack, and if we look further, in the end we will find it. But it also might be that the needle is not there."


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account